The zinc finger of Eco1 enhances its acetyltransferase activity during sister chromatid cohesion

نویسندگان

  • Itay Onn
  • Vincent Guacci
  • Douglas E. Koshland
چکیده

Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohesion establishment factor, Eco1 represses transcription via association with histone demethylase, LSD1.

Accurate chromosome segregation during cell division requires physical attachment of two sister chromatids from DNA replication until mitosis, a process known as sister chromatid cohesion. Sister chromatid cohesion is mediated by a four-subunit cohesin complex that connects sister chromatids by encircling them as molecular rings. Eco1 is an essential acetyltransferase required for the establish...

متن کامل

Eco1 Is a Novel Acetyltransferase that Can Acetylate Proteins Involved in Cohesion

Cohesion between sister chromatids is established during S phase and maintained through G2 phase until it is resolved in anaphase (for review, see [1-3]). In Saccharomyces cerevisiae, a complex consisting of Scc1, Smc1, Smc3, and Scc3 proteins, called "cohesin," mediates the connection between sister chromatids. The evolutionary conserved yeast protein Eco1 is required for establishment of sist...

متن کامل

Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion.

Genetic studies in yeast and Drosophila have uncovered a conserved acetyltransferase involved in sister-chromatid cohesion. Here, we described the two human orthologues, previously named EFO1/ESCO1 and EFO2/ESCO2. Similar to their yeast (Eco1/Ctf7 and Eso1) and fly (deco) counterparts, both proteins feature a conserved C-terminal domain consisting of a H2C2 zinc finger motif and an acetyltransf...

متن کامل

Chromatid Cohesion: Acetylation Joins the Sisters

The replication-fork-associated protein Eco1 is required for the establishment of sister chromatid cohesion, which plays an essential role in faithful chromosome segregation. Three recent studies in yeast and humans reveal that the acetyltransferase activity of Eco1 targets the cohesin subunit Smc3 to facilitate the establishment of cohesion.

متن کامل

Establishment of Sister Chromatid Cohesion

The process of sister chromatid pairing, or cohesion establishment, is coupled to DNA replication and fundamental to proper chromosome segregation and cell viability. In the past year, several articles have provided important new insights into cohesion establishment, an activity predicated on the acetyltransferase Ctf7/Eco1. Here, I review new findings that the conversion of chromatid-bound coh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2009